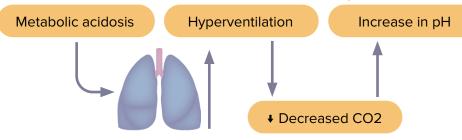
METABOLIC ACIDOSIS

Definition

- An accumulation of acid in the body caused by either increased acid generation, loss of bicarbonate, or diminished renal acid excretion
- Excess acid and decreased bicarbonate lead to pH imbalance.

ASA/antifreeze overdose

Diarrhea



Diabetic ketoacidosis

Lab Values

Disturbance	рН	CO ₂	HCO ₃₋	Cause	Compensation
Metabolic acidosis	↓ Decreased	Normal or	◆ Decreased	Kidneys control HCO ₃₋ .	Lungs excrete CO ₂ .
Normal values	7.35–7.45	35–45 mm Hg	22–26 mmol/L	O ₂ levels are not part of ABG imbalance determination.	

Compensation

Kussmaul breathing: an abnormal rapid, deep breathing pattern that helps the body blow off extra CO2; often seen in DKA

Uncompensated:

Opposite system is not responding, pH remains imbalanced.

Partial compensation:

Opposite system is working to correct imbalance, pH not yet normalized.

Full compensation:

Homeostasis achieved, all lab values return to normal.

Steps:

- 1. Identify pH (acidosis or alkalosis).
- 2. Identify CO₂ (♠, ♣, normal).
- 3. Identify HCO₃ (↑, ↓, normal).
- 4. Which label matches pH?
- 5. Look at opposite system, evaluate if it is bringing pH back to normal.

Example

Disturbance	рН	CO ₂	HCO ₃₋
???	7.25	32	18

Answer: metabolic acidosis partially compensated

Treatment

Fix the underlying cause.

Consider sodium bicarbonate IV.

Body increases respiratory rate to decrease CO₂.

NOTES

